糖心原创

School of Life Sciences
 

Image of Thorsten Allers

Thorsten Allers

Professor of Archaeal Genetics, Faculty of Medicine & Health Sciences

Contact

Biography

  • BA, Genetics, University of Cambridge (1989)
  • PhD, Cell and Molecular Biology, University of Edinburgh (1994)
  • Research Assistant, University of Edinburgh (1994-1995)
  • Visiting Postdoctoral Fellow, National Cancer Institute, NIH, USA (1995-2001)
  • Wellcome Trust Postdoctoral Fellow, 糖心原创 (2001-2002)
  • Royal Society University Research Fellow (2002-2007, renewed 2007-2010)
  • Lecturer, 糖心原创 (2010-2014)
  • Associate Professor, 糖心原创 (2014-2018)
  • Professor, 糖心原创 (2018-present)

Expertise Summary

Teaching Summary

I teach a 3rd year module 'Ageing, Sex, and DNA Repair' (LIFE3128) in the spring semester. In this module, we examine how the process of ageing is related to DNA damage, study the cellular mechanisms… read more

Research Summary

We are using genetics and biochemistry to understand how DNA replication, recombination and repair operate in the Archaea.

Archaea are the third domain of life alongside bacteria and eukaryotes. Archaea live in extremely harsh environments such as boiling acid pools or salt lakes, which pose enormous challenges for growth and DNA stability. For more information on Archaea, see

We are interested in how DNA replication, recombination and repair have evolved to meet these challenges, and how they operate in an evolutionary lineage that is fundamentally distinct from bacteria and eukaryotes.

Archaea show many similarities to eukaryotic cells, particularly in the proteins used for DNA replication, repair and recombination. Studies of the archaea may therefore help with the dissection of more complex eukaryotic systems.

We have developed genetic and biochemical systems using Haloferax volcanii as a model organism. Haloferax volcanii was isolated from the Dead Sea and is an obligate halophile.

Haloferax volcanii grows aerobically at 45掳C in media containing 2.5 M NaCl, it can be cultivated in the laboratory with ease. Many genetic and biochemical tools are available for Haloferax volcanii.

Genetic and biochemical tools for Haloferax volcanii include a markerless gene knockout system, several auxotrophic and antibiotic-resistance markers, reporter genes, an inducible promoter and plasmid vectors for protein over-expression.

Our research is focused on four areas: DNA replication origins, homologous recombination, DNA double-strand break repair, and DNA helicases.

DNA replication origins

DNA replication initiates at defined sites on the chromosome called origins. Bacteria, which have small circular chromosomes, have one replication origin. Eukaryotes have large linear chromosomes, therefore they require many replication origins.

Archaea have small circular chromosomes like bacteria, but have several replication origins like eukaryotes. The DNA replication machinery used in archaea and eukaryotes is strikingly similar.

The chromosome of Haloferax volcanii has several DNA replication origins. We are investigating how DNA replication initiates at these origins and how this process is regulated.

Intriguingly, Haloferax volcanii does not need DNA replication origins. In fact, a mutant strain lacking all origins grows significantly faster than the wild type. We have discovered that cells without origins use homologous recombination to initiate DNA replication.

Homologous recombination

Homologous recombination is an important pathway of DNA repair, it is also used to restart stalled DNA replication and to generate genetic diversity. Homologous recombination involves the exchange of DNA strands of identical sequence.

Recombination is carried out by RecA-family recombinases, which catalyse the strand exchange of homologous DNA sequences. Archaeal and eukaryotic recombinases are very similar to each other. We are investigating how recombination in archaea is carried out by RadA.

In archaea such as Haloferax volcanii, homologous recombination is carried out with assistance by RadB protein. RadB is related to RadA and the two proteins interact with each other. But unlike RadA, RadB cannot carry out strand exchange. We are investigating the role of RadB.

DNA double-strand break repair

Double-stranded breaks in DNA are very dangerous and can lead to cell death or cancer. This type of DNA damage is detected by the Mre11-Rad50 complex, it binds directly to the broken end and helps to coordinate DNA repair.

We are investigating how the repair of DNA double-strand breaks is carried out in archaea. Intriguingly, deletion of the mre11 or rad50 genes makes Haloferax volcanii more resistant to DNA damage, but the cells recover more slowly.

After DNA damage, the chromosome of Haloferax volcanii is reorganized into a compacted shape. This process is catalysed by the Mre11-Rad50 complex and may help with the rapid recovery from DNA double-strand breaks.

DNA helicases

Helicases are enzymes that separate the two complementary strands of an DNA or RNA duplex. Helicases play many important roles in the cell during processes such as transcription, DNA replication and repair. Mutations in helicase genes are frequently associated with cancer.

Hel308 is a helicase that is conserved across metazoans (multicellular animals) and archaea, but is absent from bacteria and fungi. Hel308 helicase is involved in DNA repair and recombination. We are investigating the role of Hel308 in Haloferax volcanii.

Selected Publications

  • SERDYUK, ANASTASIA and ALLERS, THORSTEN, 2025. DNA. 5(2), 24
  • LEVER, R. J., SIMMONS, E., GAMBLE-MILNER, R., BUCKLEY, R. J., HARRISON, C., PARKES, A. J., MITCHELL, L., GAUSDEN, J. A., SKULJ, S., BERTOSA, B., BOLT, E. L. and ALLERS, T., 2023. Nucleic Acids Research. 51(16), 8563-8574
  • P脡REZ-ARNAIZ, PATRICIA, DATTANI, AMBIKA, SMITH, VICTORIA and ALLERS, THORSTEN, 2020. Open Biology. 10(12), 200293
  • SCHMID AK, ALLERS T and DIRUGGIERO J, 2020. Cell. 180(4), 818-818.e1

I teach a 3rd year module 'Ageing, Sex, and DNA Repair' (LIFE3128) in the spring semester. In this module, we examine how the process of ageing is related to DNA damage, study the cellular mechanisms that have evolved to repair damage, and explain how defects in these repair pathways can lead to mutation, cancer, ageing and death. The topics covered include:

  • Theories of ageing, the role of DNA damage
  • Direct repair of DNA damage
  • Base and nucleotide excision repair, mismatch repair
  • The eukaryotic cell cycle and checkpoints
  • Homologous recombination in bacteria, yeast and higher eukaryotes
  • Non-homologous end joining and V(D)J recombination

I also teach a 2nd year module 'Bacterial Genes and Development' (LIFE2009) in the spring semester. In this module, we examine the different mechanisms of gene regulation in bacteria and their viruses. The topics I cover include:

  • RNA polymerase and the regulation of transcription
  • The lac operon and transcription attenuation
  • Bacterial sporulation
  • Bacteriophage lambda
  • SOBOROWSKI, A. L., HACKLEY, R. K., HWANG, S., ZHOU, G., DULMAGE, K. A., SCHONHEIT, P., DANIELS, C., BISSON-FILHO, A. W., MARCHFELDER, A., MAUPIN-FURLOW, J. A., ALLERS, T. and SCHMID, A. K., 2025. mSystems. 10(2), e0108424
  • SERDYUK, ANASTASIA and ALLERS, THORSTEN, 2025. DNA. 5(2), 24
  • HITCH, T. C. A., MASSON, J. M., PAUVERT, C., BOSCH, J., NUCHTERN, S., TREICHEL, N. S., BALOH, M., RAZAVI, S., AFRIZAL, A., KOUSETZI, N., AGUIRRE, A. M., WYLENSEK, D., COATES, A. C., JENNINGS, S. A. V., PANYOT, A., VIEHOF, A., SCHMITZ, M. A., STUHRMANN, M., DEIS, E. C., BISDORF, K., CHIOTELLI, M. D., LISSIN, A., SCHOBER, I., WITTE, J., CRAMER, T., RIEDEL, T., WENDE, M., WINTER, K. A., AMEND, L., RIVA, A., TRINH, S., MITCHELL, L., HARTMAN, J., BERRY, D., SEITZ, J., BOSSERT, L. C., GROGNOT, M., ALLERS, T., STROWIG, T., PESTER, M., ABT, B., REIMER, L. C., OVERMANN, J. and CLAVEL, T., 2025. Nat Commun. 16(1), 4203
  • DI CIANNI, N., BOLSINGER, S., BRENDEL, J., RAABE, M., KONIG, S., MITCHELL, L., BISCHLER, T., GRAFENHAN, T., READ, C., ERDMANN, S., ALLERS, T., WALTHER, P., URLAUB, H., DYALL-SMITH, M., PFEIFFER, F. and MARCHFELDER, A., 2025. Microlife. 6, uqaf008
  • ZHENG, X. R., CHAC脫N, M., ALLERS, T., DIXON, N. and WINTERBURN, J., 2024. Biochemical Engineering Journal. 212, 109498
  • SCHINDL, A., HAGEN, M. L., COOLEY, I., JAGER, C. M., WARDEN, A. C., ZELZER, M., ALLERS, T. and CROFT, A. K., 2024. Rsc Sustainability. 2(9), 2559-2580
  • KARAN, R., RENN, D., ALLERS, T. and RUEPING, M., 2024. Front Microbiol. 15,
  • DATTANI, AMBIKA, SHARON, ITAI, SHTIFMAN-SEGAL, ELLA, ROBINZON, SHACHAR, GOPHNA, URI, ALLERS, THORSTEN and ALTMAN-PRICE, NETA, 2023. G3 (Bethesda, Md.). 13(4), jkac306
  • KARAN, RAM, RENN, DOMINIK, NOZUE, SHUHO, ZHAO, LINGYUN, HABUCHI, SATOSHI, ALLERS, THORSTEN and RUEPING, MAGNUS, 2023. Journal of Nanobiotechnology. 21, 108
  • GUY MIEZNER, ISRAELA TURGEMAN-GROTT, KELLY M ZATOPEK, ANDREW F GARDNER, LEAH RESHEF, DEEPAK K CHOUDHARY, MARTINA ALSTETTER, THORSTEN ALLERS, ANITA MARCHFELDER and URI GOPHNA, 2023. Microlife. 4, uqad007
  • LEVER, R. J., SIMMONS, E., GAMBLE-MILNER, R., BUCKLEY, R. J., HARRISON, C., PARKES, A. J., MITCHELL, L., GAUSDEN, J. A., SKULJ, S., BERTOSA, B., BOLT, E. L. and ALLERS, T., 2023. Nucleic Acids Research. 51(16), 8563-8574
  • JIA, H. Y., DANTULURI, S., MARGULIES, S., SMITH, V., LEVER, R., ALLERS, T., KOH, J., CHEN, S. X. and MAUPIN-FURLOW, J. A., 2023. MBio. 14(4), e0085223
  • DATTANI, AMBIKA, HARRISON, CATHERINE and ALLERS, THORSTEN, 2022. Genetic Manipulation of Haloferax Species. Methods in molecular biology (Clifton, N.J.). 2522, 33-56
  • HARRISON, CATHERINE and ALLERS, THORSTEN, 2022. Progress and Challenges in Archaeal Genetic Manipulation. Methods in molecular biology (Clifton, N.J.). 2522, 25-31
  • WORTZ, JULIA, SMITH, VICTORIA, FALLMANN, JOERG, KOENIG, SABINE, THURAISINGAM, THARANI, WALTHER, PAUL, URLAUB, HENNING, STADLER, PETER F., ALLERS, THORSTEN, HILLE, FRANK and MARCHFELDER, ANITA, 2022. Cas1 and Fen1 Display Equivalent Functions During Archaeal DNA Repair FRONTIERS IN MICROBIOLOGY. 13,
  • CASTRO, I., COSTA, H., TURGEMAN-GROTT, I., ALLERS, T., MENDO, S. and CAETANO, T., 2021. Microbiological Research. 253, 126884
  • SCHMID AK, ALLERS T and DIRUGGIERO J, 2020. Cell. 180(4), 818-818.e1
  • STACHLER AE, W脰RTZ J, ALKHNBASHI OS, TURGEMAN-GROTT I, SMITH R, ALLERS T, BACKOFEN R, GOPHNA U and MARCHFELDER A, 2020. The Journal of biological chemistry.
  • P脡REZ-ARNAIZ, PATRICIA, DATTANI, AMBIKA, SMITH, VICTORIA and ALLERS, THORSTEN, 2020. Open Biology. 10(12), 200293
  • HAQUE, R. U., PARADISI, F. and ALLERS, T., 2020. Appl Microbiol Biotechnol. 104(4), 1371-1382
  • HAQUE RU, PARADISI F and ALLERS T, 2019. Applied microbiology and biotechnology.
  • BRAUN F, THOMALLA L, VAN DER DOES C, QUAX TEF, ALLERS T, KAEVER V and ALBERS SV, 2019. MicrobiologyOpen. e829
  • KELLY SA, MAGILL DJ, MEGAW J, SKVORTSOV T, ALLERS T, MCGRATH JW, ALLEN CCR, MOODY TS and GILMORE BF, 2019. Applied microbiology and biotechnology.
  • BLOMBACH F, AUSIANNIKAVA D, FIGUEIREDO AM, SOLOVIEV Z, PRENTICE T, ZHANG M, ZHOU N, THALASSINOS K, ALLERS T and WERNER F, 2018. Nucleic acids research. 46(5), 2308-2320
  • AUSIANNIKAVA D, MITCHELL L, MARRIOTT H, SMITH V, HAWKINS M, MAKAROVA KS, KOONIN EV, NIEDUSZYNSKI CA and ALLERS T, 2018. Molecular biology and evolution. 35(8), 1855-1868
  • WHITE MF and ALLERS T, 2018. FEMS microbiology reviews. 42(4), 514-526
  • AUSIANNIKAVA D and ALLERS T, 2017. Genes. 8(2), 56
  • STACHLER AE, TURGEMAN-GROTT I, SHTIFMAN-SEGAL E, ALLERS T, MARCHFELDER A and GOPHNA U, 2017. Nucleic acids research. 45(9), 5208-5216
  • GOPHNA, URI, ALLERS, THORSTEN and MARCHFELDER, ANITA, 2017. Trends in microbiology.
  • WARDELL K, HALDENBY S, JONES N, LIDDELL S, NGO GHP and ALLERS T, 2017. DNA repair. 55, 7-16
  • GOPHNA U, ALLERS T and MARCHFELDER A, 2017. Trends in microbiology. 25(6), 430-432
  • STRILLINGER, EVA, GROETZINGER, STEFAN WOLFGANG, ALLERS, THORSTEN, EPPINGER, JOERG and WEUSTER-BOTZ, DIRK, 2016. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 100(3), 1183-1195
  • HANNAH MARRIOTT and THORSTEN ALLERS, 2016. Microbiology Today.
  • MAIER L, BENZ J, FISCHER S, ALSTETTER M, JASCHINSKI K, HILKER R, BECKER A, ALLERS T, SOPPA J and MARCHFELDER A, 2015. Biochimie. 117, 129-37
  • STRILLINGER E, GR脰TZINGER SW, ALLERS T, EPPINGER J and WEUSTER-BOTZ D, 2015. Applied microbiology and biotechnology. 100(3), 1183-95
  • BRENDEL J, STOLL B, LANGE SJ, SHARMA K, LENZ C, STACHLER A, MAIER L, RICHTER H, NICKEL L, SCHMITZ RA, RANDAU L, ALLERS T, URLAUB H, BACKOFEN R and MARCHFELDER A, 2014. The Journal of biological chemistry. 289(10), 7164-77
  • TIMPSON, L.M., LILIENSIEK, A.-K., ALSAFADI, D., CASSIDY, J., SHARKEY, M.A., LIDDELL, S., ALLERS, T. and PARADISI, F., 2013. Applied Microbiology and Biotechnology. 97(1), 195-203
  • DELMAS, S., DUGGIN, I.G.L and ALLERS, T., 2013. Molecular Microbiology. 87(1), 168-179
  • KAMINSKI L, LURIE-WEINBERGER MN, ALLERS T, GOPHNA U and EICHLER J, 2013. Molecular phylogenetics and evolution. 68(2), 327-39
  • YUAN H, LIU X, HAN Z, ALLERS T, HOU J and LIU J, 2013. Nucleic acids research. 41(11), 5817-26
  • HAWKINS, M., MALLA, S., BLYTHE, M.J., NIEDUSZYNSKI, C.A. and ALLERS, T., 2013. Nature. 503, 544-547
  • TIMPSON, LEANNE M., LILIENSIEK, ANN-KATHRIN, ALSAFADI, DIYA, CASSIDY, JENNIFER, SHARKEY, MICHAEL A., LIDDELL, SUSAN, ALLERS, THORSTEN and PARADISI, FRANCESCA, 2013. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 97(1), 195-203
  • FISCHER S, JOHN VON FREYEND S, SABAG-DAIGLE A, DANIELS CJ, ALLERS T and MARCHFELDER A, 2012. Extremophiles : life under extreme conditions. 16(2), 333-43
  • STROUD A, LIDDELL S and ALLERS T, 2012. Frontiers in microbiology. 3, 224
  • NAOR A, THIAVILLE PC, ALTMAN-PRICE N, COHEN-OR I, ALLERS T, DE CR脡CY-LAGARD V and GOPHNA U, 2012. Plos one. 7(8), e43013
  • LEIGH, J.A., ALBERS, S.-V., ATOMI, H. and ALLERS, T., 2011. FEMS Microbiology Reviews. 35(4), 577-608
  • ALLERS T, 2011. Molecular Microbiology. 82(4), 789-91
  • LESTINI, R., DUAN, Z. and ALLERS, T., 2010. DNA Repair. 9(9), 994-1002
  • FISCHER, SUSAN, BENZ, JULIANE, SP脛TH, BETTINA, MAIER, LISA-KATHARINA, STRAUB, JULIA, GRANZOW, MICHAELA, RAABE, MONIKA, URLAUB, HENNING, HOFFMANN, JAN, BRUTSCHY, BERND, ALLERS, THORSTEN and SOPPA, J&, 2010. The Journal of biological chemistry. 285(45), 34429-38
  • ALLERS, THORSTEN, 2010. Overexpression and purification of halophilic proteins in Haloferax volcanii. Bioengineered bugs. 1(4), 288-290
  • HARTMAN, AMBER L, NORAIS, C脡DRIC, BADGER, JONATHAN H, DELMAS, ST脡PHANE, HALDENBY, SAM, MADUPU, RAMANA, ROBINSON, JEFFREY, KHOURI, HODA, REN, QINGHU, LOWE, TODD M, MAUPIN-FURLOW, JULIE and POHLS, 2010. PloS one. 5(3), e9605
  • ALLERS, T., BARAK, S., LIDDELL, S., WARDELL, K. and MEVARECH, M., 2010. Applied and Environmental Microbiology. 76(6), 1759-1769
  • DELMAS, S., SHUNBURNE, L., NGO, H.-P. and ALLERS, T., 2009. PLoS Genetics. 5(7), e1000552
  • HALDENBY, SAM, WHITE, MALCOLM F and ALLERS, THORSTEN, 2009. RecA family proteins in archaea: RadA and its cousins. Biochemical Society Transactions. 37(Pt 1), 102-7
  • OH, S.D, JESSOP, L, LAO, J.P, ALLERS, T and LICHTEN, M. AND HUNTER, N., 2009. Stabilization and Electrophoretic Analysis of Meiotic Recombination Intermediates in Saccharomyces cerevisiae. In: KEENEY, S., ed., Meiosis: Molecular and Genetic Methods Methods in Molecular Biology, Vol. 557. Humana Press. 209-234
  • OH SD, JESSOP L, LAO JP, ALLERS T, LICHTEN M and HUNTER N, 2009. Methods in molecular biology (Clifton, N.J.). 557, 209-34
  • H脰LZLE, A., FISCHER, S., HEYER, R., SCH脺TZ, S., ZACHARIAS, M., WALTHER, P., ALLERS, T. and MARCHFELDER, A., 2008. RNA. 14(5), 928-937
  • NORAIS, C., HAWKINS, M., HARTMAN, A.L., EISEN, J.A., MYLLYKALLIO, H. and ALLERS, T., 2007. PLoS Genetics. 3(5), e77
  • MEVARECH, M. and ALLERS, T., 2007. Genetics. In: GARRETT, R.A. and KLENK, H.-P., eds., Archaea: Evolution, Physiology and Molecular Biology Malden, MA: Blackwell Publishing. 125-136
  • LARGE, A., STAMME, C., LANGE, C., DUAN, Z., ALLERS, T., SOPPA, J. and LUND, P.A., 2007. Molecular Microbiology. 66(5), 1092-1106
  • GUY, C.P., HALDENBY, S., BRINDLEY, A., WALSH, D.A., BRIGGS, G.S., WARREN, M.J., ALLERS, T. and BOLT, E.L., 2006. Journal of Molecular Biology. 358(1), 46-56
  • BREUERT, S., ALLERS, T., SPOHN, G. and SOPPA, J., 2006. PLoS ONE. 1(1), e92
  • ALLERS, T. and MEVARECH, M., 2005. Nature Reviews: Genetics. 6(1), 58-73
  • JESSOP, L., ALLERS, T. and LICHTEN, M., 2005. Genetics. 169(3), 1353-1367
  • ALLERS, T., NGO, H.-P., MEVARECH, M. and LLOYD, R.G., 2004. Applied and Environmental Microbiology. 70(2), 943-953
  • ALLERS, T. and NGO, H.-P., 2003. Biochemical Society Transactions. 31(3), 706-709
  • ALLERS, T. and LICHTEN, M., 2001. Cell. 106(1), 47-57
  • ALLERS, T. and LICHTEN, M., 2001. Molecular Cell. 8(1), 225-231
  • ALLERS, T and LICHTEN, M, 2000. A method for preparing genomic DNA that restrains branch migration of Holliday junctions. Nucleic Acids Research. 28(2), e6
  • ALLERS, T and LEACH, D R, 1995. Journal of Molecular Biology. 252(1), 70-85

School of Life Sciences

糖心原创
Medical School
Queen's Medical Centre
Nottingham NG7 2UH

e: life-sciences@nottingham.ac.uk
t: +44 (0)115 823 0141
f: +44 (0)115 823 0142