糖心原创

School of Physics & Astronomy
 

Image of Thomas Fernholz

Thomas Fernholz

Associate Professor, Faculty of Science

Contact

Research Summary

Our research is focussed on ultra-cold atoms and Bose-Einstein condensates in micro-structured trapping potentials. With so-called atom chips, we are able to shape and generate magnetic fields that… read more

Selected Publications

  • STEVENSON, R., HUSH, M. R., BISHOP, T., LESANOVSKY, I. and FERNHOLZ, T., 2015. PHYSICAL REVIEW LETTERS. 115(16),
  • KRAUTER, H., SALART, D., MUSCHIK, C.A., PETERSEN, J.M., SHEN, H., FERNHOLZ, T. and POLZIK, E.S., 2013. Nature Physics. 9(7), 400-404
  • JENSEN, K., WASILEWSKI, W., KRAUTER, H., FERNHOLZ, T., NIELSEN, B.M., OWARI, M., PLENIO, M.B., SERAFINI, A., WOLF, M.M. and POLZIK, E.S., 2011. Nature Physics. 7(1), 13-16
  • FERNHOLZ, T., KRAUTER, H., JENSEN, K., SHERSON, J.F., S脴RENSEN, A.S. and POLZIK, E.S., 2008. Physical Review Letters. 101(7), 073601

Current Research

Our research is focussed on ultra-cold atoms and Bose-Einstein condensates in micro-structured trapping potentials. With so-called atom chips, we are able to shape and generate magnetic fields that allow us to cool and control gases of neutral atoms at micrometer distances from a material surface.

Quantum optics and light-matter interfaces

We investigate techniques to map the quantum states of light pulses into the spin degrees of freedom of atomic ensembles and vice versa. Using their long coherence times, the atoms serve as a quantum memory, enabling, e.g., long-distance quantum communication. On the other hand, mapping quantum states of matter onto light makes them accessible to well established quantum optical techniques like photon counting and homodyne detection. These can then be used as analytical tools for a variety of strongly correlated many-body states. We plan to trap very elongated clouds of atoms inside the small hollow core of a photonic crystal fibre, which will lead to strong interactions with the light field even for gases containing only a few hundred atoms.

Toroidal and ring-shaped matterwaves

Another line of experiments will make use of atom chip based traps with non-trivial topologies. By confining an ultracold gas to the surface of a hollow torus, we want to realize a two-dimensional matter wave with periodic boundary conditions. This will help overcoming certain restrictions to the validity of theoretical models, which are encountered when using harmonic trapping potentials. A major ingredient to our experiments are radio-frequency (rf) dressed potentials. By exploiting the vector type coupling between atoms and rf-fields we gain control over atomic motion and will be able to let atoms counterpropagate in two rings. Such a setup can be used as a matter wave Sagnac interferometer that is extremely sensitive to rotation.

More information can be found at:

  • NAVEZ, P, PANDEY, S., MAS, H., POULIOS, K., FERNHOLZ, T. and KLITZING, W. VON, 2016. New Journal of Physics. 18, 075014
  • STEVENSON, R., HUSH, M. R., BISHOP, T., LESANOVSKY, I. and FERNHOLZ, T., 2015. PHYSICAL REVIEW LETTERS. 115(16),
  • KRAUTER, H., SALART, D., MUSCHIK, C.A., PETERSEN, J.M., SHEN, H., FERNHOLZ, T. and POLZIK, E.S., 2013. Nature Physics. 9(7), 400-404
  • BETTELLI, S., MAXWELL, D., FERNHOLZ, T., ADAMS, C. S. and LESANOVSKY, I., 2013. Available at: <http://arxiv.org/abs/1306.0869>
  • JENSEN, K., WASILEWSKI, W., KRAUTER, H., FERNHOLZ, T., NIELSEN, B.M., OWARI, M., PLENIO, M.B., SERAFINI, A., WOLF, M.M. and POLZIK, E.S., 2011. Nature Physics. 7(1), 13-16
  • JENSEN, K., WASILEWSKI, W., KRAUTER, H., FERNHOLZ, T., NIELSEN, B. M., PETERSEN, J. M., RENEMA, J. J., BALABAS, M. V., OWARI, M., PLENIO, M. B., SERAFINI, A., WOLF, M. M., MUSCHIK, C. A., CIRAC, J. I., MULLER, J. H. and POLZIK, E. S., 2011. 22ND INTERNATIONAL CONFERENCE ON ATOMIC PHYSICS. 264,
  • DE ANGELIS, M., ANGONIN, M. C., BEAUFILS, Q., BECKER, CH, BERTOLDI, A., BONGS, K., BOURDEL, T., BOUYER, P., BOYER, V., DOERSCHER, S., DUNCKER, H., ERTMER, W., FERNHOLZ, T., FROMHOLD, T. M., HERR, W., KRUEGER, P., KUERBIS, CH, MELLOR, C. J., DOS SANTOS, F. PEREIRA, PETERS, A., POLI, N., POPP, M., PREVEDELLI, M., RASEL, E. M., RUDOLPH, J., SCHRECK, F., SENGSTOCK, K., SORRENTINO, F., STELLMER, S., TINO, G. M., VALENZUELA, T., WENDRICH, T. J., WICHT, A., WINDPASSINGER, P. and WOLF, P., 2011. PROCEEDINGS OF THE 2ND EUROPEAN FUTURE TECHNOLOGIES CONFERENCE AND EXHIBITION 2011 (FET 11). 7, 334-336
  • JENSEN, K., WASILEVSKI, W., KRAUTER, H., RENEMA, J. J., NIELSEN, B. M., FERNHOLZ, T. and POLZIK, E. S., 2010. Laser Spectroscopy: Proceedings of the XIX International Conference. 137-147
  • BALABAS, MV, JENSEN, K, WASILEWSKI, W, KRAUTER, H, MADSEN, LS, MULLER, JH, FERNHOLZ, T and POLZIK, ES, 2010. Optics Express. 18(6), 5825-5830
  • WASILEWSKI, W., FERNHOLZ, T., JENSEN, K., MADSEN, L.S., KRAUTER, H., MUSCHIK, C. and POLZIK, E.S., 2009. Optics Express. 17(16), 14444-14457
  • WHITLOCK, S., GERRITSMA, R., FERNHOLZ, T. and SPREEUW, R.J.C., 2009. New Journal Of Physics. 11(2), 023021
  • FERNHOLZ, T., KRAUTER, H., JENSEN, K., SHERSON, J.F., S脴RENSEN, A.S. and POLZIK, E.S., 2008. Physical Review Letters. 101(7), 073601
  • VAN ES, JJP, WHITLOCK, S, FERNHOLZ, T, VAN AMERONGEN, AH and VAN DRUTEN, NJ, 2008. Physical Review A. 77(6), 063623
  • FERNHOLZ, T, GERRITSMA, R, WHITLOCK, S, BARB, I and SPREEUW, RJC, 2008. Physical Review A. 77(3), 033409
  • GERRITSMA, R, WHITLOCK, S, FERNHOLZ, T, SCHLATTER, H, LUIGJES, JA, THIELE, JU, GOEDKOOP, JB and SPREEUW, RJC, 2007. Physical Review A. 76(3), 033408
  • FERNHOLZ, T, GERRITSMA, R, KRUGER, P and SPREEUW, RJC, 2007. Physical Review A. 75(6), 063406
  • MANZ, S, FERNHOLZ, T, SCHMIEDMAYER, J and PAN, JW, 2007. Physical Review A. 75(4), 040101
  • WILZBACH, M, HAASE, A, SCHWARZ, M, HEINE, D, WICKER, K, LIU, X, BRENNER, KH, GROTH, S, FERNHOLZ, T, HESSMO, B and SCHMIEDMAYER, J, 2006. Fortschritte Der Physik-Progress Of Physics. 54(8-10), 746-764
  • LIU, XY, BRENNER, KH, WILZBACH, M, SCHWARZ, M, FERNHOLZ, T and SCHMIEDMAYER, J, 2005. Applied Optics. 44(32), 6857-6860
  • GURLIT, W, ZIMMERMANN, R, GIESEMANN, C, FERNHOLZ, T, EBERT, V, WOLFRUM, J, PLATT, U and BURROWS, JP, 2005. Applied Optics. 44(1), 91-102
  • GROTH, S, KRUGER, P, WILDERMUTH, S, FOLMAN, R, FERNHOLZ, T, SCHMIEDMAYER, J, MAHALU, D and BAR-JOSEPH, I, 2004. Applied Physics Letters. 85(14), 2980-2982
  • TEICHERT, H, FERNHOLZ, T and EBERT, V, 2003. Applied Optics. 42(12), 2043-2051
  • FERNHOLZ, T, TEICHERT, H and EBERT, V, 2002. Applied Physics B-Lasers And Optics. 75(2-3), 229-236
  • RUTH, AA, FERNHOLZ, T, BRINT, RP and MANSFIELD, MWD, 2002. Journal Of Molecular Spectroscopy. 214(1), 80-86
  • SCHLOSSER, E, FERNHOLZ, T, TEICHERT, H and EBERT, V, 2002. Spectrochimica Acta. 58(11), 2347-2359
  • EBERT, V, FERNHOLZ, T and VOGEL, P, 2001. Technisches Messen. 68(10), 439-447
  • EBERT, V, FERNHOLZ, T, GIESEMANN, C, PITZ, H and TEICHERT, H, 2001. Technisches Messen. 68(9), 406-414
  • EBERT, V, FERNHOLZ, T, GIESEMANN, C, PITZ, H, TEICHERT, H, WOLFRUM, J and JARITZ, H, 2000. Proceedings of the Combustion Institute. 28, 423-430
  • RUTH, AA, FERNHOLZ, T, BRINT, RP and MANSFIELD, MWD, 1998. Chemical Physics Letters. 287(3-4), 403-411

School of Physics and Astronomy

The 糖心原创
University Park
Nottingham NG7 2RD

For all enquiries please visit: