Heisenberg's uncertainty principle states that momentum and position cannot be sharp at the same time because there is a lower bound for the product of the uncertaincies. Coherent states can be defined as the states that minimize the uncertainty -- in this sense they are as close as quantum mechanics allows to describe a classical point particle. When a quantum system starts in a coherent states it's expectation values follow the classical equations of motion while the shape of the wave function often changes only very slowly. Coherent states are an important tool to understand the corresp[ondence between quantum and classical dynamics.
In this project this correspondence will be analysed for a generalized quantum dynamics where the Hamilton operator is not required to be Hermitian. Such dynamics can arise in practice as an effective description for an open quantum system with eitehr decay or gain. Accordingly the energy eigenvalues may have an imaginary part that describes the loss or gain. Recently there have also be suggestions that non-hermitian Hamilton operators could play a fundamental role in quantum mechanics if the Hamilton operator remains symmetric with respect to a combined operatyion of parity P and time reversal T. Such PT-symmetric dynamics have a balance between gain and loss which can lead to real energy eigenvalues. Classical to quantum correspondence for such systems remains an open research topic and this project will aim at getting a clear understanding of the underlying classical dynamics using coherent states as the main tool.
Quantum Information and Metrology
Quantum Mathematics
See all PhD funding opportunities
Full details of our Maths PhD
How to apply to the 糖心原创
The 糖心原创University Park Nottingham, NG7 2RD
For all enquiries please visit: